14
Bioremediation for Sustainable Environmental Cleanup
Carberry, J. B. and J. Wik. 2001. Comparison of ex situ and in situ bioremediation of unsaturated soils contaminated
by petroleum. J. Environ. Sci. Health, Part A. 36(8): 1491–1503.
Çelik, Ö. and E. Y. Akdaş. 2019. Tissue-specific transcriptional regulation of seven heavy metal stress-responsive
miRNAs and their putative targets in nickel indicator castor bean (R. communis L.) plants. Ecotoxicol. Environ.
Saf. 170: 682–690.
Cerniglia, C. E. 1984. Microbial metabolism of polycyclic aromatic hydrocarbons. Adv. Appl. Microbiol. 30: 31–71.
Cerniglia, C. E. and J. B. Sutherland. 2010. Degradation of polycyclic aromatic hydrocarbons by fungi. In Handbook
of Hydrocarbon and Lipid Microbiology.
Chang, F. C., C. H. Ko, M. J. Tsai, Y. N. Wang and C. Y. Chung. 2014. Phytoremediation of heavy metal contaminated
soil by Jatropha curcas. Ecotoxicol. 23: 1969–1978.
Chaussonnerie, S., P. L. Saaidi, E. Ugarte, A. Barbance, A. Fossey, V. Barbe, G. Gyapay, T. Bruls, M. Chevallier,
L. Couturat, S. Fouteau, D. Muselet, E. Pateau, G. N. Cohen, N. Fonknechten, J. Weissenbach and D. Le
Paslier. 2016. Microbial degradation of a recalcitrant pesticide: chlordecone. Front. Microbial. 7: 2025.
Cherian, S. and M. M. Oliveira. 2005. Transgenic plants in phytoremediation: recent advances and new
possibilities. Environ. Sci. Technol. 39(24): 9377–9390.
Chen, B. Y., C. M. Ma, K. Han, P. L. Yueh, L. J. Qin and C. C. Hsueh. 2016. Influence of textile dye and decolorized
metabolites on microbial fuel cell-assisted bioremediation. Bioresour. Technol. 200: 1033–1038.
Chen, S., Q. Hu, M. Hu, J. Luo, Q. Weng and K. Lai. 2011. Isolation and characterization of a fungus able to degrade
pyrethroids and 3-phenoxybenzaldehyde. Bioresour. Technol. 102(17): 8110–8116.
Cho-Ruk, K., J. Kurukote, P. Supprung and S. Vetayasuporn. 2006. Perennial plants in the phytoremediation of lead
contaminated soils. Biotechnol. 5: 1–4.
Colberg, P. J. S. and L. Y. Young. 1995. Anaerobic degradation of nonhalogenated homocyclic aromatic compounds
coupled with nitrate, iron, or sulfate reduction. Microbial Transformation and Degradation of Toxic Organic
Chemicals. 307330.
Cooney, J. J., S. A. Silver and E. A. Beck. 1985. Factors influencing hydrocarbon degradation in three freshwater
lakes. Microb. Ecol. 11(2): 127–137.
Daneshvar, N., M. Ayazloo, A. R. Khataee and M. Pourhassan. 2007. Biological decolorization of dye solution
containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol. 98(6): 1176–1182.
Dellagnezze, B. M., S. P. Vasconcellos, A. L. Angelim, V. M. M. Melo, S. Santisi, S. Cappello and V. M. Oliveira.
2016. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil
degradation in mesocosm scale. Mar. Pollut. Bull. 107(1): 107–117.
Dellamatrice, P. M., M. E. Silva-Stenico, L. A. B. D. Moraes, M. F. Fiore and R. T. R. Monteiro. 2017. Degradation
of textile dyes by cyanobacteria. Braz. J. Microbiol. 48: 25–31.
Dercova, K., K. Laszlova, H. Dudášová, S. Murinova, M. Balaščáková and J. Škarba. 2015. The hierarchy in selection
of bioremediation techniques: the potentials of utilizing bacterial degraders. Chemické Listy 109: 279–288.
Dua, M., A. Singh, N. Sethunathan and A. Johri. 2002. Biotechnology and bioremediation: successes and
limitations. Appl. Microbiol. Biotechnol. 59(2): 143–152.
de Lima Souza, H. M., L. D. Sette, A. J. Da Mota, J. F. do Nascimento Neto, A. Rodrigues, T. B. de Oliveira, L. A. de
Oliveira, H. D. Santos Barroso and S. P. Zanott. 2016. Filamentous fungi isolates of contaminated sediment in
the Amazon region with the potential for benzo (a) pyrene degradation. Water Air Soil Pollut. 227(12): 1–13.
Eid, E. M., T. M. Galal, N. A. Sewelam, N. I. Talha, S. M. and Abdallah. 2020. Phytoremediation of heavy metals by four
aquatic macrophytes and their potential use as contamination indicators: a comparative assessment. Environ
Sci. Pollut. Res. 27: 12138–12151.
EPA. 1998. A Citizen’s Guide to Phytoremediation. EPA 542-F-98-011. U.S. Environmental Protection Agency,
Washington.
EPA. 2000. A citizen guide to phytoremediation. EPA 542-F-98-011. United States Environmental Protection Agency,
p.6. Available http//www.bugsatwork.com/XYCLONYX/EPA_GUIDES/PHYTO.PDF.
EPA. 2016. United States Environmental Protection Agency. https://www3.epa.gov/ (Accessed May 2016).
Eslami, N., A. Takdastan and F. Atabi. 2022. Biological Remediation of Polychlorinated Biphenyl (PCB)-Contaminated
soil using the vermicomposting technology for the management of sewage sludge containing Eisenia fetida
earthworms. Soil Sediment Contamin. An International Journal, 1–17.
Esparza-Naranjo, S. B., G. F. da Silva, D. C. Duque-Castaño, W. L. Araújo, C. K. Peres, M. Boroski and R. C.
Bonugli-Santos. 2021. Potential for the biodegradation of atrazine using leaf litter fungi from a subtropical
protection area. Curr. Microbiol. 78(1): 358–368.
Gangola, S., G. Negi, A. Srivastava and A. Sharma. 2015. Enhanced biodegradation of endosulfan by Aspergillus
and Trichoderma spp. isolated from an agricultural field of tarai region of Uttarakhand. Pestic. Res. J. 27(2):
223–230.
Gangola, S., A. Sharma, P. Bhatt, P. Khati and P. Chaudhary. 2018. Presence of esterase and laccase in Bacillus subtilis
facilitates biodegradation and detoxification of cypermethrin. Sci. Rep. 8(1): 1–11.